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Abstract

Understanding 3d human interactions is fundamental

for fine grained scene analysis and behavioural modeling.

However, most of the existing models focus on analyzing a

single person in isolation, and those who process several

people focus largely on resolving multi-person data associ-

ation, rather than inferring interactions. This may lead to

incorrect, lifeless 3d estimates, that miss the subtle human

contact aspects–the essence of the event–and are of little

use for detailed behavioral understanding. This paper ad-

dresses such issues and makes several contributions: (1) we

introduce models for interaction signature estimation (ISP)

encompassing contact detection, segmentation, and 3d con-

tact signature prediction; (2) we show how such compon-

ents can be leveraged in order to produce augmented losses

that ensure contact consistency during 3d reconstruction;

(3) we construct several large datasets for learning and

evaluating 3d contact prediction and reconstruction meth-

ods; specifically, we introduce CHI3D, a lab-based accur-

ate 3d motion capture dataset with 631 sequences contain-

ing 2, 525 contact events, 728, 664 ground truth 3d poses,

as well as FlickrCI3D, a dataset of 11, 216 images, with

14, 081 processed pairs of people, and 81, 233 facet-level

surface correspondences within 138, 213 selected contact

regions. Finally, (4) we present models and baselines to

illustrate how contact estimation supports meaningful 3d

reconstruction where essential interactions are captured.

Models and data are made available for research purposes

at http://vision.imar.ro/ci3d.

1. Introduction

Human sensing has recently seen a revival[34, 28,

24, 48] due to advances in large-scale deep learning ar-

chitectures, powerful 3d kinematic and statistical shape

models[23, 14, 32], as well as large scale 2d and 3d annot-

ated datasets[20, 1, 13, 25]. While considerable progress

has been achieved in localizing multiple humans in im-

Figure 1: Monocular 3d reconstruction, constrained by con-

tact signatures, preserves the essence of the physical inter-

action between people and supports behavioral reasoning.

ages, or reconstructing 3d humans in isolation, in a person-

centred frame, little work has focused on inferring the pose

and placement of multiple people in a three-dimensional,

scene-centered coordinate system.

Moreover, the few approaches that have pursued such

goals recently[29, 50, 51, 19, 40, 3, 16], concentrated

mostly on the arguably difficult problem of multi-person

data association, rather than the more subtle aspects such

as close interactions during human contact. This leads to

predictions that even when impressive in terms of plaus-

ible pose and shape from a distance, miss the essence

of the event at close scrutiny, when e.g. two reconstruc-

tions fail to capture the contact during a handshake, a tap

on the shoulder, or a hug. Such interactions are particu-

larly difficult to resolve as effects compound: on one hand

depth and body shape uncertainty could result in compens-

ation by pushing limbs in front or further away from their

ground truth position, when inferring 3d from monocular

images[39]; on the other hand, partial occlusion and the rel-

atively scarce detail (resolution) for contact areas in images,

typical of many human interactions, can make visual evid-

ence inconclusive.

In this paper, we propose a first set of methodological

elements to address the reconstruction of interacting

humans, in a more principled manner, by relying on

recognition, segmentation, mapping, and 3d reconstruction.

More precisely, we break down the problem of producing

veridical 3d reconstructions of interacting humans into
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(a) contact detection, (b) binary segmentation of contact

regions on the corresponding surfaces associated to the in-

teracting people; (c) contact signature prediction to produce

estimates of the potential many-to-many correspondence

map between regions in contact; and (d) 3d reconstruction

under augmented losses built using additional surface

contact constraints given a contact signature. To train

models and evaluate the techniques we introduce two

large datasets: CHI3D, a lab-based 3d motion capture

repository containing 631 sequences containing 2, 525
contact events, 728, 664 ground truth skeletons, as well

as FlickrCI3D, a dataset of 11, 216 images, with 14, 081
processed pairs of people, and 81, 233 facet-level surface

contact correspondences. In extensive experiments, we

evaluate all system components and provide quantitative

and qualitative comparisons showing how the proposed

approach can capture 3d human interactions realistically.

Human and Object Interactions. The 3d reconstruction

of multiple people in the context of close interactions was

partially addressed in [21, 22], where 3d human skeletons

were rigged to mesh surfaces of participants. Scenes were

captured using a multi camera setup on a green background.

3d pose estimation and shape modelling were performed

using energy-based optimization, taking into account the

multi-camera setup, green background separation and

temporal consistency. Human interactions or contact were

not modeled explicitly beyond non-penetration of mesh

surfaces. Yun et al.[49] proposed methods for action

classification in scenes with two interacting people using

RGB-D data and multiple instance learning. However,

their data does not imply physical interaction between

subjects and no form of contact is labeled. Hand to hand

interaction is studied in [44, 45, 42, 30], where models are

optimized using energy minimization with non-penetration

constraints but without a contact model. Other methods

focus on the interaction between the 3d human shape and

the surrounding environment[10, 31, 2, 44, 33, 11, 4], in

most cases without a detailed object contact model.

Psycho-social Studies. [41] construct a body region map

to describe the most likely contact areas for different types

of social bonds (e.g. child and parent, siblings, life partners,

casual friends, strangers) and conclude that social contact

between two individuals varies with emotional bondage.

Human close interaction analysis could be important in

social studies involving robot assisted therapy for autistic

children. [27, 36] record robot assisted therapy sessions and

perform extensive analysis over the interactions between

the therapist, the children and the robot. Research in

this area can impact social group interaction analysis c.f .

[37, 6]. A similar study [18] was performed over the dyadic

relationship between mother and children.

Datasets. Most datasets dedicated to human understanding

are centered around single person scenarios[1, 13, 38, 25]

and even those that include multiple people [20, 46, 7] do

not explicitly model the close interaction between different

people. Human interactions have been captured before in

classification/recognition datasets, one such example being

[9]. The dataset provides action labels for short video se-

quences (i.e. under 1-2 seconds) collected from YouTube.

However, the dataset does not provide detailed contact an-

notations either in the image or at the level of 3d surfaces,

as pursued here.

2. Datasets and Annotation Protocols

FlickrCI3D. We collect images from the YFCC100M

dataset[43], a database containing photos uploaded to

Flickr by amateur photographers who share their work

under a Creative Commons license. Using [15] to search

the dataset, we download images expected to contain scenes

with close interactions between people. We either query

the dataset using tags generic to the human category, such

as “persons“, “friends“, “men“, “women“, or using tags

related to actions performed by humans in physical contact,

such as “dance“, “hug“, “arrest“, “handshake“. We run a

common multi-person 2d keypoint estimator[5] - to detect

the humans in each picture and select all pairs of people

whose bounding boxes overlap. We automatically filter out

the images with small resolution, where pairs of people

are severely occluded or have large scale differences. We

refer to this data collection together with the underlying

3d surface contact annotations (described in the sequel) as

FlickrCI3D.

CHI3D. We also collect a lab-based 3d motion capture data-

set, CHI3D (Close Human Interactions 3D), for quantitative

evaluation of 3d pose and shape reconstruction. We employ

a MoCap system of 10 motion cameras synchronized with 4
additional RGB cameras. We capture short video sequences

of 6 human subjects, grouped in 3 pairs, performing close

interaction scenarios: grab, handshake, hit, holding hands,

hug, kick, posing (for picture) and push. To preserve real-

ism as much as possible, rach of the human subjects takes

turns on wearing the body markers. To obtain a pseudo-

ground truth 3d pose configuration of the person not wear-

ing the markers, we run a 2d keypoint estimator[5] in each

of the 4 views and perform robust triangulation.

In total, we collect 631 sequences consisting of 485, 776
pairs of RGB frames and MoCap skeleton configurations.

Using triangulation, we manage to reconstruct an addi-

tional 242, 888 3d skeleton configurations. The number of

pseudo-ground truth 3d skeletons is smaller since the 2d

keypoint estimator sometimes fails for people in close prox-

imity, which causes the triangulation to fail as well.
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2.1. Annotation Protocol

We next describe the manual annotation pipeline, which

consists of two stages. First, the annotators label whether

or not two people are in contact. Second, they localize the

physical contact for pairs of people annotated as being in

contact, by establishing correspondences between two 3d

human body meshes.

In both steps, the annotators are presented with a picture

and two superimposed 2d skeletons identifying the people

of interest. This approach helps clear the identity confusion

in crowded scenes or in interactions with high overlap

between people.

Contact Classification. Given a scene where the detector

identified 2d body poses in close proximity, we identify

four scenarios that have to be manually classified: (1) er-

roneous 2d pose estimations, i.e. the assignment between

the estimated skeletons and the people in the image cannot

be determined, or at least two estimated limbs have no

overlap with the real limbs in the image, (2) certainly no

contact between the two people, (3) contact between the

two people and (4) uncertain contact between the two

people, i.e. both "contact" and "no contact" cases may

be possible, but it is ambiguous in the given image. On

FlickrCI3D, annotators are instructed to label each pair of

people with one of these four classes, which is achieved

at an annotation rate of around 500 pairs / hour. By

discarding the few pairs of 2d skeletons that are erroneous

(8%), the result is a database of 65, 457 images, containing

90, 167 pairs of people in close proximity, in the following

proportions: 18% "contact", 21% "uncertain contact", 61%
"no contact". Example images from each of these classes

are shown in fig. 2. On CHI3D, annotators are instructed to

select only one frame per video sequence where people are

in physical contact. Since more information is available,

we show annotators all 4 views, as well as the temporal

context of the corresponding sequence. This results in a

total of 2, 524 frames of people in contact.

3D Contact Signature Annotation. When two people are

in physical contact, we want to understand where and how

they interact by encoding the information on the surfaces of

two 3d human meshes.

To this end, we define the facet-level contact signa-

ture Cfacet(I, P1, P2) ∈ {0, 1}Nfacets×Nfacets between

two people P1, P2 in image I as Cfacetf1,f2
(I, P1, P2) = 1 if

facet f1 of the mesh of person P1 is in contact with facet f2
of the mesh of person P2 and Cfacetf1,f2

(I, P1, P2) = 0 if they

are not in contact.

We also define the facet-level contact segmentation

Sfacet(I, P1, P2) ∈ {0, 1}Nfacets×2 of the contact of two

people P1, P2 in image I as Sfacetf,i (I, P1, P2) = 1 if facet

f of the mesh of person Pi is in contact with any other facet

of the mesh of the other person, and Sfacetf,i (I, P1, P2) = 0

Figure 2: Contact classes examples in FlickrCI3D and

CHI3D (last column). First Row: "no contact", clearly

visible that the two people are not touching at all. Second

Row: "uncertain contact", there is ambiguity if there is con-

tact or not. Third Row: "contact", the contact between the

two persons is clearly visible.

otherwise. Note that the contact segmentation S can be re-

covered from the contact signature C.

State of the art body meshes [47, 32] have a large num-

ber of surface facets, Nfacets ≈ 20, 000. Annotating a

contact signature with high fidelity in such a huge dimen-

sional space, i.e. Nfacets × Nfacets, is both tedious and

time-consuming.

An alternative to simplify annotation burden is to first

perform segmentation and then establish correspondences

only between the contact segments on both surfaces. How-

ever, even fine segmentation annotation of the contact on

3d surfaces is cumbersome and requires a high degree of

precision and creativity. Instead, we relax the annotation

granularity and group the Nfacets facets into a number of

Nreg = 75 predefined regions. We guide our grouping

strategy by following the anatomical parts of the human

body and their symmetries, as seen in fig. 3.

Now, the definitions of region-level contact signature

Creg(I, P1, P2) ∈ {0, 1}Nreg×Nreg and region-level con-

tact segmentation Sreg(I, P1, P2) ∈ {0, 1}Nreg×2 follow

naturally by considering two regions r1 and r2 to be in con-

tact if at least one facet from region r1 is in contact with

at least one facet from region r2. With such a setup, seg-

mentation can be performed quickly with a few clicks on

the regions in contact.

To support the annotation effort, we implemented a cus-

tom 3d annotation interface which displays an image, the

superimposed 2d poses of the people of interest, alongside
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Segmentation IoU Signature IoU

# Reg. CHI3D FlickrCI3D CHI3D FlickrCI3D

75 0.692 0.456 0.472 0.226
37 0.790 0.542 0.682 0.370
17 0.815 0.638 0.721 0.499
9 0.878 0.745 0.799 0.635

Table 1: Annotator consistency as a function of the granu-

larity of surface regions. The task has an underlying ground

truth, but it is sometimes hard for annotators to identify it.

At 17 and 9 regions partitioning, respectively, there is reas-

onable consistency. Notice that for CHI3D the consistency

is higher as the annotators rely on 4 views of the contact.

two rendered 3d body meshes that can be manipulated via

rotations, translations or zoom. Each facet-level corres-

pondence is annotated one at a time, by choosing one facet

on each surface. The regions containing the two facets are

automatically colored in red to illustrate that they are now

segmented as contact regions. The annotators proceed la-

beling other correspondences, until the region-level contact

segmentation is complete. The choice of which facet-level

correspondences to label is up to the annotators. Using this

simplified annotation process does not guarantee a complete

set of correspondences. The annotators accomplish a rate of

around 25 pairs of people / hour. Some examples of annota-

tions are shown in fig. 3.

Note that while in CHI3D the annotators are shown all

4 views of the contact scene, in FlickrCI3D they have ac-

cess to only one view of the interaction. Although the pairs

of people are certainly in contact (as annotated in the first

stage), there can still be ambiguity on the precise configur-

ation of the contact, mostly caused by occlusions. In such

scenarios, we instruct the annotators to imagine one pos-

sible configuration of the contact signature and annotate it.

Datasets Statistics. As the annotation task is expens-

ive and time-consuming, each interaction in the datasets

is labeled by only one annotator. Following the annota-

tion process on FlickrCI3D, we gather a number of 11, 216
images and 14, 081 valid pairs of people in contact, with

81, 233 facet-level correspondences within 138, 213 selec-

ted regions. This results in an average of 5.77 correspond-

ences per pair of people. For CHI3D we gather 2, 524 im-

ages and pairs of people, with 10, 168 facet-level corres-

pondences within 15, 168 selected regions. This results in

an average of 4.03 correspondences per pair of people.

In fig. 4 (left) we show a 3d human region heat map

based on the frequencies of the regions involved in a con-

tact. Notice that the front side of the hands/arms as well as

the back side of a person are the most common body parts

involved in contacts. This observation is also confirmed by

the work of [41] who give contact region maps for various

types of human relationships. In fig. 4 (right) we show a fre-

Figure 3: 3d contact segmentations and signatures from

FlickrCI3D. For an RGB image, the annotators map facets

from one mesh to facets on the other mesh if they are in

direct contact. By doing so, they automatically segment the

regions in contact (marked in red) and facet-level corres-

pondences (marked by arrows).

Figure 4: (Left) Frequency of body regions involved in a

contact (75 regions). Note the left-right symmetry and the

high frequency for the arms, shoulders and back regions.

(Right) Correspondence frequency counts (17 regions).

quency map of the correspondences at region level. Notice

the large coverage of annotated contact correspondences.

Given the ambiguities of determining contact corres-

pondences from a single view, we check the consistency

between annotators on a small common set of images. Res-

ults can be seen in Table 1. We evaluate the consistency

considering different levels of granularity when grouping

facets into regions. It can be noticed that at the highest

level of detail they have lower consistency, but as coarser

regions of the body are aggregated, consistency increases.

This observation is partly congruent to the computational

perception study of [26] who argue that humans are not very

precise in re-enacting 3d body poses viewed in monocular

images. Note that, for CHI3D, consistency is higher as mul-
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Figure 5: Multi-task architecture ISP for detection and prediction of interaction signatures, that (1) classifies whether people

are in contact, (2) holistically segments the corresponding 3d body surface contact regions for each person, and (3) determines

their specific 3d body contact signature. Each task has a specific loss, LB , LS and LC respectively. As input, we feed an

RGB image of people in close proximity, two 2d skeleton predictions and semantic human features computed on the image.

The binary contact estimation task uses a single fully connected layer. The 3d contact segmentation and signature prediction

tasks use a sequence of fully connected layers and graph convolutions (shared by both tasks), followed by fully connected

layers specialized for each task.

tiple views are available in the annotation process.

3. Methodology

In this section, we describe the models we introduce for

the following tasks: (1) contact detection (classification),

(2) 3d contact segmentation, (3) 3d contact signature pre-

diction and (4) 3d pose and shape reconstruction using con-

tact signatures.

For tasks (1)-(3), we propose learning methods (collect-

ively referred as Interaction Signature Prediction - ISP)

based on deep neural networks that take as input an image

I cropped around the bounding box of the two interacting

people P1, P2, together with the associated 2d human body

poses detected[5]. We encode each 2d body pose as nkp
channels, one for each keypoint type, by considering a 2d

Gaussian around the coordinate of each keypoint. Follow-

ing [8], we stack the two pose encodings with the RGB im-

age I . In addition, we also stack semantic human features to

the input, i.e. 2d body part labeling[34] and 2d part affinity

fields, both computed on I .

We use the ResNet50[12] backbone architecture (up to

the last average pooling layer) as a trainable feature encoder,

which we modify to accommodate the larger number of in-

put channels by increasing the size of the first convolutional

filters. An overview of the pipeline is given in fig. 5.

3.1. Contact Classification

Given an image I with two people in close proximity we

want to estimate if there is any physical contact between

the two. We train a deep binary classification network com-

posed of the feature encoder network and add a fully con-

nected layer which outputs the probability of the two label

classes, B = {0, 1}, 1 – "contact" and 0 – "no contact". We

train using the weighted binary cross entropy loss function

with w0 < w1 as the weights for classes 0 and 1, respect-

ively, to account for the more frequent "no-contact" class.

3.2. Contact Segmentation and Signature

In order to operate within a manageable output space,

we consider contact segmentation and signature prediction

at a region-level. In the following, let N = Nreg , S =
Sreg ∈ R

N×2, the ground-truth contact segmentation, and

C = Creg ∈ R
N×N , the ground-truth contact signature.

We leverage the synergy between the segmentation and sig-

nature tasks and train them together in a multi-task setting.

Following the feature encoder backbone, we split the

network into separate computational pathways for each per-

son, in order to better disentangle their feature represent-

ations. As a first step, we extract two sets of features

Fp ∈ R
N×D0 , p = 1, 2, using fully connected layers. To

integrate the topology of the regions on the mesh, we next

apply a fixed number of graph convolution iterations, fol-

lowing the architecture proposed in [17]. The adjacency
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IoU75 IoU37 IoU17 IoU9

Method Segm. Signature Segm. Signature Segm. Signature Segm. Signature

ISP full 0.318 0.082 0.365 0.129 0.475 0.248 0.618 0.408
ISP w/o semantic 2d features as input 0.300 0.073 0.350 0.116 0.465 0.240 0.618 0.410
ISP w/o jointly learning contact segm. - 0.072 - 0.124 - 0.218 - 0.383

ISP w/o masking out corresp. outside the estimated segm. mask - 0.075 - 0.124 - 0.230 - 0.385
Human performance 0.456 0.226 0.542 0.370 0.638 0.499 0.745 0.635

Table 2: Results of our contact segmentation and signature estimation on FlickrCI3D, evaluated for different region granular-

ities on the human 3d surface (from 75, down to 9 regions). We ablate different components of our full method to illustrate

their contribution. Human performance represents the consistency values between annotators from table 1.

matrix we use corresponds to the N regions on the 3d tem-

plate body mesh, where we set an edge between two regions

if they share a boundary. We denote by F
′

p the output of the

graph convolutions. We pass these features to segmenta-

tion (ΘSp
) and signature (ΘCp

) specialization layers, each

implemented as a fully connected layer.

The output of the ΘSp
layers, S̃ = [S̃1S̃2], represents the

final segmentation prediction for the two persons. We use

the sigmoid cross-entropy loss

LS(I) = −

2×N∑

i=1

(pSSi log(S̃i) + (1− Si) log(1− S̃i))

(1)

with a balancing term pS ∈ R between the positive and

negative classes. For the contact signature prediction task,

we use the output of the ΘCp
layers, F

′′

p , and compute our

estimate as C̃ = F
′′

1 ∗F
′′T
2 . We again use the cross entropy

loss, LC , with the difference that we iterate to N × N and

use another balancing term, pC ∈ R.

3.3. 3D Reconstruction with Contact Signatures

Given an image I and its contact signature C(P1, P2),
we want to recover the 3d pose and shape parameters of the

two people in contact, P1 and P2. We start from the op-

timization framework of [50] and augment it with new loss

terms that explicitly use the contact signature. The original

energy formulation used in [50] is given by

L =
∑

i∈{1,2}

(LS(Pi) + Lpsr(Pi)) + Lcol(P1, P2) (2)

where LS corresponds to the 2d semantic projection error

with respect to the visual evidence extracted from the image

(i.e. semantic body part labeling and 2d pose) and Lpsr is a

term for pose and shape regularization. Lcol(P1, P2) is a 3d

collision penalty between P1 and P2 computed on a set of

bounding sphere primitives. Gradients are passed from the

loss function, through the 3d body model, all the way to the

pose and shape parameters. Our body model has articulated

body and hands [47, 35] and we additionally use estimated

2d hand joints positions. This is necessary when modeling

two interacting people, as hands are often involved in phys-

ical contact (see fig. 4). We reflect these changes in the ad-

apted terms L⋆S and L⋆psr and also introduce a new contact

signature loss term, LG(P1, P2), that measures the geomet-

ric alignment of regions in correspondence. The adapted

energy formulation becomes

L⋆ =
∑

i∈{1,2}

(L⋆S(Pi) + L⋆psr(Pi))+ (3)

Lcol(P1, P2) + LG(P1, P2)

where LG(P1, P2) = LD(P1, P2) + LN (P1, P2). The first

termLD(P1, P2) seeks to minimize the sum of the distances

between all the region pairs that are in contact, (r1, r2) ∈
C(P1, P2)

LD(P1, P2) =
∑

(r1,r2)∈C(P1,P2)

ΦD(r1, r2) (4)

where the distance between two regions ΦD(r1, r2) is

ΦD(r1, r2) =
∑

f1∈ψD(r1)

min
f2∈ψD(r2)

φD(f1, f2)+ (5)

∑

f2∈ψD(r2)

min
f1∈ψD(r1)

φD(f1, f2)

For a facet in one region, this function takes its respective

first nearest neighbor facet in the second region and com-

putes the Euclidean distance φD(f1, f2) between the cen-

ters of the two facets, f1 and f2. Our approach is similar to

iterative closest point, but performed at facet level. For each

region, we consider a subset of facets obtained by applying

a selection operator ψD. This offers flexibility to operate

not only on the entire set of facets (computationally intens-

ive), but also on a fixed number of uniformly sampled facets

or on a given subset of facets, e.g. in the case of ground-truth

facet level correspondences.

The second term, LN (P1, P2), enforces the orientation

alignment for all region surfaces in contact, (r1, r2) ∈
C(P1, P2)

LN (P1, P2) =
∑

(r1,r2)∈C(P1,P2)

ΦN (r1, r2) (6)
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Grab Hit Handshake Holding hands Hug Kick Posing Push OVERALL

Optim. Pose Trans. Pose Trans. Pose Trans. Pose Trans. Pose Trans. Pose Trans. Pose Trans. Pose Trans. Pose Trans.

Loss Contact Dist. Contact Dist. Contact Dist. Contact Dist. Contact Dist. Contact Dist. Contact Dist. Contact Dist. Contact Dist.

L⋆ 116.5 390.14 119.4 367.1 96.8 387.7 100.9 379.5 173.9 400.2 140.0 419.2 138.8 364.3 116.9 380.5 125.4 368.0
19.1 (3.5) 8.1 (4.4) 12.1 (2.8) 19.8 (3.2) 62.0 (44.5) 32.4 (6.7) 40.8 (10.9) 14.4 (4.3) 26.0 (10.0)

L⋆ w/o LG 121.1 415.9 127.7 395.7 98.5 406.3 100.3 388.8 180.4 424.4 154.8 460.1 139.5 376.9 123.6 399.4 130.7 408.4
[50] 459.0 (366.3) 425.8 (363.4) 377.1 (305.2) 373.4 (273.9) 368.4 (327.5) 549.9 (464.2) 388.3 (327.0) 425.1 (369.4) 420.8 (349.6)

Table 3: 3d human pose and translation estimation errors, as well as mean (median) 3D contact distance, expressed in mm,

for the CHI3D dataset. Our full optimization function, with the geometric alignment term on contact signatures, decreases

the pose and translation estimation errors and the 3D distance between the surfaces annotated to be in contact. Higher contact

distances are noticeable for complex interactions with complex contact signatures, such as hugging. As the parameters of our

method are validated to minimize primarily pose reconstruction error, we do not necessarily achieve 0 contact distance. This

can be more tightly enforced by increasing the importance of the geometric alignment term, LG, in the energy formulation,

at the expense of a slightly increased reconstruction error.

where ΦN (r1, r2) measures the orientation alignment of a

correspondence as the sum of all the orientation alignments

between selected pairs of facets from r1 and r2

ΦN (r1, r2) =
∑

(f1,f2)∈ψN (r1,r2)

φN (f1, f2) (7)

Here, the selection operator ψN can re-utilize the facet level

matches found in (5) or other defined facet level correspond-

ences. To construct φN , we start by defining the normal of

facet f = (v1, v2, v3) as the cross product of its sides

N(f) = (v2 − v1)× (v3 − v1) (8)

This normal vector always points outside the body by con-

vention. The normal vector N(f) has unit norm, N(f) =
N(f)/ ‖N(f)‖. We align two facets such that their normal

vectors are opposite (i.e. parallel and of different sign)

φN (f1, f2) = 1 +N(f1) •N(f2) (9)

4. Experiments

Contact-Based Tasks. We report quantitative results on

our collected FlickrCI3D dataset. We split both the contact

classification database (90, 167 images) and the contact seg-

mentation and correspondences database (14, 081 images)

into train, validation and test subsets each, using the fol-

lowing proportions 85%, 7.5% and 7.5% respectively. In

all our experiments, we validate the meta-parameters on the

validation set and report the results on the test set. We evalu-

ate the performance of the contact detection task and obtain

an average accuracy of 0.846, with 0.844 for the "contact"

class and 0.848 for the "no contact" class.

For the contact segmentation and signature prediction

method, we train our network with Nreg = 75, though we

can also obtain the coarser versions post-hoc. In training,

since our ground truth does not necessarily contain the full

set of region correspondences, we do not penalize the non-

annotated (but possible) correspondences between the seg-

ments on one person and those on the other. At inference

time, we exploit the contact segmentation and use its pre-

dictions to mask spurious correspondences.

We evaluate our predictions using the intersection over

union (IoUNreg
) metric, computed for different region

granularities. Table 2 reports the performance of our full

model, for which predictions get closer to the human

performance as the region granularity becomes coarser. We

also train a version of our method without concatenating

the semantic 2d features to the input. In almost all cases,

these input features affect performance positively. Simil-

arly, jointly learning the two tasks and using the contact

segmentation mask to eliminate non-valid correspondences

improves the contact signature estimation performance.

3D Reconstruction Results. In fig. 6 we show reconstruc-

tion examples on images from FlickrCI3D using our pro-

posed model formulation (see (3)) and contact annotations

at different levels of granularity. The first column represents

an RGB image from the FlickrCI3D dataset. Without con-

tact information, the method of [50] may provide plausible

poses, sometimes with good image alignment, but the sub-

tleties of the interaction are lost. In order to avoid mutual

volume intersections, people may even be placed far from

each other. By incorporating contact correspondences we

can successfully recover the essential details of the interac-

tions, such as hands touching during a handshake/dancing

or tackling someone in a rugby match.

We also perform quantitative experiments on the CHI3D

dataset and ablate the impact of our geometric alignment

term, LG. We select a small set of images (160) to validate

the weight of each term in the energy function and report

results on the remaining test set. We evaluate both the in-

ferred pose, using mean per joint position error (MPJPE),

and the estimated translation. In addition, on the estimated

reconstructions, we compute the mean and median distance

between the regions in the contact signature. This con-

tact distance is defined as the minimum Euclidean distance

between each pair of facets from two regions annotated to

be in correspondence. Results are given in table 3 where
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Figure 6: 3D human pose and shape reconstructions using contact constraints of different granularity. The first column

shows the RGB images followed by their reconstructions without contact information (column 2), using contacts based on 37

and 75 regions, respectively (columns 3 & 4), and using facet-based correspondences (column 5). While using facet-based

constraints provides the most accurate estimates, reasonable results can be obtained even for coarser (region) assignments.

annotated contact information improves the accuracy of the

reconstruction. For pose, we only evaluate on a standard

3d body joints configuration compatible with the MoCap

format that does not include body extremities (e.g. hands

and feet). Our complete optimization framework not only

produces more accurate reconstructions of pose and trans-

lation, but also closely approaches the contact signature.

5. Conclusions

We have argued that progress in human sensing and

scene understanding would eventually require the detailed

3d reconstruction of human interactions where contact

plays a major role, not only for veridical estimates, but

in order to ultimately understand fine-grained actions,

behavior and intent. We have proposed a graded modeling

framework for Interaction Signature Prediction (ISP) based

on contact detection and 3d correspondence estimation

over model surface regions at different levels of detail, with

subsequent 3d reconstruction under losses that integrate

contact and surface normal alignment constraints. We

have undertaken a major effort to collect 3d ground truth

data of humans involved in interactions (CHI3D, 631

sequences containing 2,525 contact events, 728,664 ground

truth poses), as well as image annotations in the wild

(FlickrCI3D, a dataset of 11, 216 images, with 14, 081
processed pairs of people, and 81,233 facet-level surface

correspondences within 138, 213 selected regions). We

have evaluated all components in detail, showing their

relevance towards accurate 3d reconstruction of human

contact. Models and data are made available for research.
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